第五百九十七章 激烈至极的菲尔兹奖竞争!

给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有精确的等式关系。

——这就是BSD猜想,全称是贝赫和斯维纳通-戴尔猜想(BirchandSwinnerton-Dyer猜想),如果觉得上面的描述过太复杂,还可以粗略地描述为:

“建立椭圆曲线E的有理点集形成的有限生成阿贝尔群的算数信息和与之相对应的Hasse-WeilL-函数L(E,s)在s=1的泰勒展开式的分析信息之间的联系。”

这样是不是更容易理解一些?

简单来说,BSD猜想就关于椭圆曲线上有理点结构刻画的数论猜想,也是同余数中的一个重要猜想,难度还在费马大定理之上。

虽然论起数学上的意义,BSD猜想及不上黎曼猜想,但难度也相对稍低一点点,所以许多数学家在进攻黎曼猜想无果后,便转而钻研BSD猜想,为此还发明了大量的数学工具,比如Gross-Zagier公式,就是推进BSD猜想证明的最有力工具之一,也是数学界主流的研究BSD猜想的首选工具,目前九成与BSD猜想有关的成果,都是依靠Gross-Zagier公式。

现在哈夫曼教授却以一个前所未有的新角度,从拟阵和群论方向来研究BSD猜想,又怎会不引起观众们的强烈好奇?

虽说哈夫曼教授是拟阵和群论方面的大行家,也曾在霍奇猜想上有极深的研究,但忽然转向BSD猜想,会不会太过突兀?

在无数疑惑与好奇的目光中,哈夫曼教授走上了讲台。

年近四旬的哈夫曼教授是典型的“头发越少学问越大”,额前的头发几乎都掉光了,只剩下稀稀疏疏的几缕发丝。他站定便开口了:

“众所周知,BSD猜想阶数0和阶数1的情形已差不多被解决了,而对更高阶数的BSD猜想,主要还是依赖于继续发掘Gross-Zagier公式的潜力,但时至今日并没有足够亮眼的成果,显然用Gross-Zagier公式来研究高阶BSD猜想非常吃力。我是这样想的,证明BSD猜想离不开群论与椭圆曲线,那能不能再结合拟阵呢?我花了半年多的时间来做这个研究,接下来我就谈谈我的理解。”

哈夫曼教授是典型的从不废话的数学家,连寒暄客套都没,便直接进入主题。

“在座的应该都知道,Hasse-Weil函数与欧拉乘积的关系,我就直接跳过了这部分,直接运用欧拉乘积……”

哈夫曼教授的研究成果非常出色,从另一个全新的角度来研究高阶的BSD猜想,虽然距离将之证明出来还有遥远的距离,但他从拟阵入手,结合群论、黎曼zeta函数、二次数域的高斯猜想,展示出了一个前景广阔的新方向。

当一个小时的报告结束后,台下掌声如雷,包括法尔廷斯、陶教授等人都一边用力鼓掌一边点头赞叹。

宁青筠悄声感叹道:“这个哈夫曼教授好厉害呀,不愧是被称为除你之外最可能获得菲尔兹奖的数学家。刚才他还熟练地引用了咱们的超几何映射法,深得其中的真髓,果然国际数学界强者如云,我感觉自己与他还有不少的差距。”

秦克笑道:“他确实是天才,起码从刚才的报告来看,他对BSD猜想的研究已能在全世界排到前五了,这还是他只研究了半年的成果。不过你也不用妄自菲薄,他是拟阵与群论方面的超级高手,用自己研究了一辈子的工具来思考BSD猜想,当然会有比较明显的成果,你如果用三种青柠数论方法来研究BSD猜想,也会取得让人眼前一亮的优秀成果。”

宁青筠点点头,信心稍稍恢复了些,确实如此,哈夫曼教授从拟阵和群论入手取得了很耀眼的成果,但这个方向是不是就是正确,能不能彻底证明BSD猜想,还是个未知之数。

就像当初的“哈代-拉马努金体系”和“雅克·所罗门·阿达马体系”,在半个多世纪里被无数人用来研究黎曼猜想,也取得了许多让人惊叹的成果,但最终还是被秦克推翻了,这两个体系方向都只能非常接近黎曼猜想的终点,但错的就是错的,无论怎么接近,都不可能到达真正的终点。

总的来说,哈夫曼教授的这场报告是很成功的,最大的亮点是创新,以及从中表现出来的深厚数学功底。

从全场热烈无比的掌声可以推测,哈夫曼教授怕已有九成以上的机率锁定了一枚菲尔兹奖章。

在哈夫曼教授的“珠玉”面前,接下来的学术报告全变成了“砖块”,让人感觉乏善可陈。

第二、第三天的学术报告同样再没如此惊艳的报告,直到第四天,得国著名数学家莱佩教授作了题为《p进制霍奇理论方面的研究》的报告,再次引起了轰动。

这位摘下了得国科学界最高的莱布尼茨奖、被得国数学界寄以厚望的杰出数学家,以独创的“p进分析技术”,另辟蹊径地在霍奇猜想上取得了突破,赢得几乎与哈夫曼教授相近的热烈掌声。

一连两个重磅级的种子选手分别向着七大千禧年数学难题发起了冲锋号角,而且都以创新的方法取得了非常优秀的成果,由此可见本届菲尔兹奖竞争之激烈,同时也能看出秦克证明了黎曼猜想给他们的冲击之大——现在不以七大千禧年难题为报告主题,仿佛都不好意思站到台上与秦克一起领奖了。