当夕阳的余晖逐渐消散,天空开始被夜幕的深邃所覆盖,星星点点的光亮预示着夜晚的降临。
江辰在校园的小道上匆匆奔跑,而他的思绪飘回到刚刚的那段对话。
刚刚的对话让他意识到,自己对许多理论性的课题感到疏离,原因是它们距离实际应用似乎总有一段难以逾越的鸿沟。
但是他可以选取一个与实际应用密切相关的数学研究方向啊。
就比如,离散数学!这个名词在江辰的脑海中逐渐清晰起来。
这是一门研究离散量结构及其相互关系的数学学科,是现代数学中不可或缺的重要分支。
它所涉及的对象通常是有限个或可数个元素,这使得它在实际应用中具有极高的灵活性和适用性。
江辰开始想象离散数学在各个领域的广泛应用。
在计算机科学领域,离散数学扮演着至关重要的角色。
它是程序设计语言、数据结构、人工智能、数据库、算法设计与分析、理论计算机科学等学科的先行课程。
在江辰的眼中,离散数学与他正致力于的另一个重要研究方向雷达,紧密地联系在一起。
他的目标不仅仅是深化个人的学术研究,更是为了公司即将进入的雷达产业奠定坚实的理论基础。
雷达作为江辰给公司准备的下一个产业发展方向,其在实际应用中对数学的依赖不言而喻。
在雷达的设计和制造过程中,数学知识扮演着至关重要的角色。
线性代数、概率论、矩阵分析、随机过程和凸优化等数学专业,都是雷达研发中不可或缺的工具。
然而,江辰深知,这些看似与离散数学无关的数学领域,实际上在雷达信号处理中都有离散数学的影子。
雷达系统需要对复杂的信号进行处理和分析,而离散数学正是处理离散信号和数据的强大工具。
通过离散数学的方法,可以更精确地描述和分析雷达信号的特性,从而优化雷达的性能。